18.12.2013 Views

TDA7294 - Datasheet Catalog

TDA7294 - Datasheet Catalog

TDA7294 - Datasheet Catalog

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

®<br />

<strong>TDA7294</strong><br />

100V - 100W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY<br />

VERY HIGH OPERATING VOLTAGE RANGE<br />

(±40V)<br />

DMOS POWER STAGE<br />

HIGH OUTPUT POWER (UP TO 100W MU-<br />

SIC POWER)<br />

MUTING/STAND-BY FUNCTIONS<br />

NO SWITCH ON/OFF NOISE<br />

NO BOUCHEROT CELLS<br />

VERY LOW DISTORTION<br />

VERY LOW NOISE<br />

SHORT CIRCUIT PROTECTION<br />

THERMAL SHUTDOWN<br />

DESCRIPTION<br />

The <strong>TDA7294</strong> is a monolithic integrated circuit in<br />

Multiwatt15 package, intended for use as audio<br />

class AB amplifier in Hi-Fi field applications<br />

(Home Stereo, self powered loudspeakers, Topclass<br />

TV). Thanks to the wide voltage range and<br />

MULTIPOWER BCD TECHNOLOGY<br />

Multiwatt15V Multiwatt15H<br />

ORDERING NUMBERS:<br />

<strong>TDA7294</strong>V<br />

<strong>TDA7294</strong>HS<br />

to the high out current capability it is able to supply<br />

the highest power into both 4Ω and 8Ω loads<br />

even in presence of poor supply regulation, with<br />

high Supply Voltage Rejection.<br />

The built in muting function with turn on delay<br />

simplifies the remote operation avoiding switching<br />

on-off noises.<br />

Figure 1: Typical Application and Test Circuit<br />

C7 100nF +Vs C6 1000µF<br />

R3 22K<br />

VM<br />

VSTBY<br />

C2<br />

22µF<br />

R2<br />

680Ω<br />

C1 470nF<br />

R1 22K<br />

R5 10K<br />

R4 22K<br />

IN- 2<br />

IN+<br />

IN+MUTE<br />

MUTE<br />

STBY<br />

3<br />

4<br />

10<br />

9<br />

MUTE<br />

STBY<br />

1<br />

-<br />

+<br />

+Vs<br />

7 13<br />

8<br />

THERMAL<br />

SHUTDOWN<br />

S/C<br />

PROTECTION<br />

15<br />

+PWVs<br />

14<br />

6<br />

OUT<br />

C5<br />

22µF<br />

BOOT-<br />

STRAP<br />

R6<br />

2.7Ω<br />

C10<br />

100nF<br />

C3 10µF C4 10µF<br />

STBY-GND<br />

-Vs<br />

-PWVs<br />

C9 100nF C8 1000µF<br />

-Vs<br />

D93AU011<br />

Note: The Boucherot cell R6, C10, normally not necessary for a stable operation it could<br />

be needed in presence of particular load impedances at V S


<strong>TDA7294</strong><br />

PIN CONNECTION (Top view)<br />

TAB connected to -V S<br />

BLOCK DIAGRAM<br />

ABSOLUTE MAXIMUM RATINGS<br />

Symbol Parameter Value Unit<br />

V S Supply Voltage (No Signal) ±50 V<br />

I O Output Peak Current 10 A<br />

P tot Power Dissipation T case = 70°C 50 W<br />

T op Operating Ambient Temperature Range 0 to 70 °C<br />

T stg , T j Storage and Junction Temperature 150 °C<br />

2/17


<strong>TDA7294</strong><br />

THERMAL DATA<br />

Symbol Description Value Unit<br />

R th j-case Thermal Resistance Junction-case Max 1.5 °C/W<br />

ELECTRICAL CHARACTERISTICS (Refer to the Test Circuit VS = ±35V, RL = 8Ω, GV = 30dB;<br />

Rg = 50 Ω; Tamb = 25°C, f = 1 kHz; unless otherwise specified.<br />

Symbol Parameter Test Condition Min. Typ. Max. Unit<br />

V S Supply Range ±10 ±40 V<br />

I q Quiescent Current 20 30 65 mA<br />

I b Input Bias Current 500 nA<br />

V OS Input Offset Voltage +10 mV<br />

I OS Input Offset Current +100 nA<br />

P O RMS Continuous Output Power d = 0.5%:<br />

V S = ± 35V, R L = 8Ω<br />

V S = ± 31V, R L = 6Ω<br />

V S = ± 27V, R L = 4Ω<br />

Music Power (RMS)<br />

IEC268.3 RULES - ∆t = 1s (*)<br />

d = 10%<br />

R L = 8Ω ; V S = ±38V<br />

R L = 6Ω ; V S = ±33V<br />

R L = 4Ω ; V S = ±29V (***)<br />

d Total Harmonic Distortion (**) P O = 5W; f = 1kHz<br />

P O = 0.1 to 50W; f = 20Hz to 20kHz<br />

V S = ±27V, R L = 4Ω:<br />

P O = 5W; f = 1kHz<br />

P O = 0.1 to 50W; f = 20Hz to 20kHz<br />

0.01<br />

%<br />

0.1 %<br />

SR Slew Rate 7 10 V/µs<br />

G V Open Loop Voltage Gain 80 dB<br />

G V Closed Loop Voltage Gain 24 30 40 dB<br />

e N Total Input Noise A = curve<br />

f = 20Hz to 20kHz<br />

60<br />

60<br />

60<br />

70<br />

70<br />

70<br />

100<br />

100<br />

100<br />

0.005<br />

0.1<br />

1<br />

2 5<br />

f L, f H Frequency Response (-3dB) P O = 1W 20Hz to 20kHz<br />

R i Input Resistance 100 kΩ<br />

SVR Supply Voltage Rejection f = 100Hz; V ripple = 0.5Vrms 60 75 dB<br />

T S Thermal Shutdown 145 °C<br />

STAND-BY FUNCTION (Ref: -V S or GND)<br />

V ST on Stand-by on Threshold 1.5 V<br />

V ST off Stand-by off Threshold 3.5 V<br />

ATT st-by Stand-by Attenuation 70 90 dB<br />

I q st-by Quiescent Current @ Stand-by 1 3 mA<br />

MUTE FUNCTION (Ref: -V S or GND)<br />

V Mon Mute on Threshold 1.5 V<br />

V Moff Mute off Threshold 3.5 V<br />

ATT mute Mute AttenuatIon 60 80 dB<br />

Note (*):<br />

MUSIC POWER CONCEPT<br />

MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity)<br />

1 sec after the application of a sinusoidal input signal of frequency 1KHz.<br />

Note (**): Tested with optimized Application Board (see fig. 2)<br />

Note (***): Limited by the max. allowable current.<br />

W<br />

W<br />

W<br />

W<br />

W<br />

W<br />

%<br />

%<br />

µV<br />

µV<br />

3/17


<strong>TDA7294</strong><br />

Figure 2: P.C.B. and components layout of the circuit of figure 1. (1:1 scale)<br />

Note:<br />

The Stand-by and Mute functions can be referred either to GND or -VS.<br />

On the P.C.B. is possible to set both the configuration through the jumper J1.<br />

4/17


<strong>TDA7294</strong><br />

APPLICATION SUGGESTIONS (see Test and Application Circuits of the Fig. 1)<br />

The recommended values of the external components are those shown on the application circuit of Figure<br />

1. Different values can be used; the following table can help the designer.<br />

COMPONENTS SUGGESTED VALUE PURPOSE<br />

LARGER THAN<br />

SUGGESTED<br />

SMALLER THAN<br />

SUGGESTED<br />

R1 (*) 22k INPUT RESISTANCE INCREASE INPUT<br />

IMPRDANCE<br />

DECREASE INPUT<br />

IMPEDANCE<br />

R2 680Ω CLOSED LOOP GAIN DECREASE OF GAIN INCREASE OF GAIN<br />

SET TO 30dB (**)<br />

R3 (*) 22k INCREASE OF GAIN DECREASE OF GAIN<br />

R4 22k ST-BY TIME<br />

CONSTANT<br />

R5 10k MUTE TIME<br />

CONSTANT<br />

C1 0.47µF INPUT DC<br />

DECOUPLING<br />

C2 22µF FEEDBACK DC<br />

DECOUPLING<br />

C3 10µF MUTE TIME<br />

CONSTANT<br />

C4 10µF ST-BY TIME<br />

CONSTANT<br />

LARGER ST-BY<br />

ON/OFF TIME<br />

LARGER MUTE<br />

ON/OFF TIME<br />

LARGER MUTE<br />

ON/OFF TIME<br />

LARGER ST-BY<br />

ON/OFF TIME<br />

SMALLER ST-BY<br />

ON/OFF TIME;<br />

POP NOISE<br />

SMALLER MUTE<br />

ON/OFF TIME<br />

HIGHER LOW<br />

FREQUENCY<br />

CUTOFF<br />

HIGHER LOW<br />

FREQUENCY<br />

CUTOFF<br />

SMALLER MUTE<br />

ON/OFF TIME<br />

SMALLER ST-BY<br />

ON/OFF TIME;<br />

POP NOISE<br />

C5 22µF BOOTSTRAPPING SIGNAL<br />

DEGRADATION AT<br />

LOW FREQUENCY<br />

C6, C8 1000µF SUPPLY VOLTAGE<br />

BYPASS<br />

C7, C9 0.1µF SUPPLY VOLTAGE<br />

BYPASS<br />

DANGER OF<br />

OSCILLATION<br />

DANGER OF<br />

OSCILLATION<br />

(*) R1 = R3 FOR POP OPTIMIZATION<br />

(**) CLOSED LOOP GAIN HAS TO BE ≥ 24dB<br />

5/17


<strong>TDA7294</strong><br />

TYPICAL CHARACTERISTICS<br />

(Application Circuit of fig 1 unless otherwise specified)<br />

Figure 3: Output Power vs. Supply Voltage.<br />

Figure 4: Distortion vs. Output Power<br />

Figure 5: Output Power vs. Supply Voltage<br />

Figure 6: Distortion vs. Output Power<br />

Figure 7: Distortion vs. Frequency<br />

Figure 8: Distortion vs. Frequency<br />

6/17


<strong>TDA7294</strong><br />

TYPICAL CHARACTERISTICS (continued)<br />

Figure 9: Quiescent Current vs. Supply Voltage<br />

Figure 10: Supply Voltage Rejection vs. Frequency<br />

Figure 11: Mute Attenuation vs. Vpin10<br />

Figure 12: St-by Attenuation vs. Vpin9<br />

Figure 13: Power Dissipation vs. Output Power<br />

Figure 14: Power Dissipation vs. Output Power<br />

7/17


<strong>TDA7294</strong><br />

INTRODUCTION<br />

In consumer electronics, an increasing demand<br />

has arisen for very high power monolithic audio<br />

amplifiers able to match, with a low cost the performance<br />

obtained from the best discrete designs.<br />

The task of realizing this linear integrated circuit<br />

in conventional bipolar technology is made extremely<br />

difficult by the occurence of 2nd breakdown<br />

phenomenon. It limits the safe operating<br />

area (SOA) of the power devices, and as a consequence,<br />

the maximum attainable output power,<br />

especially in presence of highly reactive loads.<br />

Moreover, full exploitation of the SOA translates<br />

into a substantial increase in circuit and layout<br />

complexity due to the need for sophisticated protection<br />

circuits.<br />

To overcome these substantial drawbacks, the<br />

use of power MOS devices, which are immune<br />

from secondary breakdown is highly desirable.<br />

The device described has therefore been developed<br />

in a mixed bipolar-MOS high voltage technology<br />

called BCD 100.<br />

Figure 15: Principle Schematic of a DMOS unity-gain buffer.<br />

1) Output Stage<br />

The main design task one is confronted with while<br />

developing an integrated circuit as a power operational<br />

amplifier, independently of the technology<br />

used, is that of realizing the output stage.<br />

The solution shown as a principle shematic by Fig<br />

15 represents the DMOS unity-gain output buffer<br />

of the <strong>TDA7294</strong>.<br />

This large-signal, high-power buffer must be capable<br />

of handling extremely high current and voltage<br />

levels while maintaining acceptably low harmonic<br />

distortion and good behaviour over frequency<br />

response; moreover, an accurate control<br />

of quiescent current is required.<br />

A local linearizing feedback, provided by differential<br />

amplifier A, is used to fullfil the above requirements,<br />

allowing a simple and effective quiescent<br />

current setting.<br />

Proper biasing of the power output transistors<br />

alone is however not enough to guarantee the absence<br />

of crossover distortion.<br />

While a linearization of the DC transfer characteristic<br />

of the stage is obtained, the dynamic behaviour<br />

of the system must be taken into account.<br />

A significant aid in keeping the distortion contributed<br />

by the final stage as low as possible is provided<br />

by the compensation scheme, which exploits<br />

the direct connection of the Miller capacitor<br />

at the amplifier’s output to introduce a local AC<br />

feedback path enclosing the output stage itself.<br />

2) Protections<br />

In designing a power IC, particular attention must<br />

be reserved to the circuits devoted to protection<br />

of the device from short circuit or overload conditions.<br />

Due to the absence of the 2nd breakdown phenomenon,<br />

the SOA of the power DMOS transistors<br />

is delimited only by a maximum dissipation<br />

curve dependent on the duration of the applied<br />

stimulus.<br />

In order to fully exploit the capabilities of the<br />

power transistors, the protection scheme implemented<br />

in this device combines a conventional<br />

SOA protection circuit with a novel local temperature<br />

sensing technique which " dynamically" controls<br />

the maximum dissipation.<br />

8/17


<strong>TDA7294</strong><br />

Figure 16: Turn ON/OFF Suggested Sequence<br />

+Vs<br />

(V)<br />

+35<br />

-35<br />

-Vs<br />

VIN<br />

(mV)<br />

VST-BY<br />

PIN #9<br />

(V)<br />

5V<br />

VMUTE<br />

PIN #10<br />

(V)<br />

5V<br />

IP<br />

(mA)<br />

VOUT<br />

(V)<br />

OFF<br />

ST-BY<br />

PLAY<br />

ST-BY<br />

OFF<br />

MUTE<br />

MUTE<br />

D93AU013<br />

In addition to the overload protection described<br />

above, the device features a thermal shutdown<br />

circuit which initially puts the device into a muting<br />

state (@ Tj = 145 o C) and then into stand-by (@<br />

Figure 17: Single Signal ST-BY/MUTE Control<br />

Circuit<br />

MUTE/<br />

ST-BY<br />

10K<br />

20K<br />

30K<br />

1N4148<br />

MUTE<br />

10µF<br />

STBY<br />

10µF<br />

D93AU014<br />

Tj = 150 o C).<br />

Full protection against electrostatic discharges on<br />

every pin is included.<br />

3) Other Features<br />

The device is provided with both stand-by and<br />

mute functions, independently driven by two<br />

CMOS logic compatible input pins.<br />

The circuits dedicated to the switching on and off<br />

of the amplifier have been carefully optimized to<br />

avoid any kind of uncontrolled audible transient at<br />

the output.<br />

The sequence that we recommend during the<br />

ON/OFF transients is shown by Figure 16.<br />

The application of figure 17 shows the possibility<br />

of using only one command for both st-by and<br />

mute functions. On both the pins, the maximum<br />

applicable range corresponds to the operating<br />

supply voltage.<br />

9/17


<strong>TDA7294</strong><br />

APPLICATION INFORMATION<br />

HIGH-EFFICIENCY<br />

Constraints of implementing high power solutions<br />

are the power dissipation and the size of the<br />

power supply. These are both due to the low efficiency<br />

of conventional AB class amplifier approaches.<br />

Here below (figure 18) is described a circuit proposal<br />

for a high efficiency amplifier which can be<br />

adopted for both HI-FI and CAR-RADIO applications.<br />

The <strong>TDA7294</strong> is a monolithic MOS power amplifier<br />

which can be operated at 80V supply voltage<br />

(100V with no signal applied) while delivering output<br />

currents up to ±10 A.<br />

This allows the use of this device as a very high<br />

power amplifier (up to 180W as peak power with<br />

T.H.D.=10 % and Rl = 4 Ohm); the only drawback<br />

is the power dissipation, hardly manageable in<br />

the above power range.<br />

Figure 20 shows the power dissipation versus<br />

output power curve for a class AB amplifier, compared<br />

with a high efficiency one.<br />

In order to dimension the heatsink (and the power<br />

supply), a generally used average output power<br />

value is one tenth of the maximum output power<br />

at T.H.D.=10 %.<br />

From fig. 20, where the maximum power is<br />

around 200 W, we get an average of 20 W, in this<br />

condition, for a class AB amplifier the average<br />

power dissipation is equal to 65 W.<br />

The typical junction-to-case thermal resistance of<br />

the <strong>TDA7294</strong> is 1 o C/W (max= 1.5 o C/W). To<br />

avoid that, in worst case conditions, the chip temperature<br />

exceedes 150 o C, the thermal resistance<br />

of the heatsink must be 0.038 o C/W (@ max ambient<br />

temperature of 50 o C).<br />

As the above value is pratically unreachable; a<br />

high efficiency system is needed in those cases<br />

where the continuous RMS output power is higher<br />

than 50-60 W.<br />

The <strong>TDA7294</strong> was designed to work also in<br />

higher efficiency way.<br />

For this reason there are four power supply pins:<br />

two intended for the signal part and two for the<br />

power part.<br />

T1 and T2 are two power transistors that only operate<br />

when the output power reaches a certain<br />

threshold (e.g. 20 W). If the output power increases,<br />

these transistors are switched on during<br />

the portion of the signal where more output voltage<br />

swing is needed, thus "bootstrapping" the<br />

power supply pins (#13 and #15).<br />

The current generators formed by T4, T7, zener<br />

Figure 18: High Efficiency Application Circuit<br />

+40V<br />

+20V<br />

D1 BYW98100<br />

T1<br />

BDX53A<br />

270<br />

T3<br />

BC394<br />

R4<br />

270<br />

T4<br />

BC393<br />

R5<br />

270<br />

T5<br />

BC393<br />

GND<br />

C1<br />

1000µF<br />

C2<br />

1000µF<br />

C3<br />

100nF<br />

C4<br />

100nF<br />

C5<br />

1000µF<br />

C6<br />

1000µF<br />

C7<br />

100nF<br />

C8<br />

100nF<br />

C9<br />

330nF<br />

R1<br />

2<br />

R2<br />

2<br />

C10<br />

330nF<br />

PLAY<br />

ST-BY<br />

IN<br />

D5<br />

1N4148<br />

C11 330nF<br />

R16<br />

13K<br />

C13 10µF<br />

R13 20K<br />

R14 30K<br />

R15 10K<br />

C14<br />

10µF<br />

3<br />

4<br />

9<br />

10<br />

7<br />

13<br />

<strong>TDA7294</strong><br />

8 15<br />

L1 1µH<br />

2<br />

14<br />

6<br />

1<br />

L2 1µH<br />

R16<br />

13K<br />

D3 1N4148<br />

C11 22µF<br />

R3 680<br />

C15<br />

22µF<br />

L3 5µH<br />

270<br />

D4 1N4148<br />

Z1 3.9V<br />

Z2 3.9V<br />

R7<br />

3.3K<br />

R8<br />

3.3K<br />

R6<br />

20K<br />

C16<br />

1.8nF<br />

OUT<br />

C17<br />

1.8nF<br />

-20V<br />

-40V<br />

D2 BYW98100<br />

270<br />

T2<br />

BDX54A<br />

T6<br />

BC393<br />

T7<br />

BC394<br />

R9<br />

270<br />

R10<br />

270<br />

D93AU016<br />

T8<br />

BC394<br />

R11<br />

29K<br />

10/17


<strong>TDA7294</strong><br />

Figure 19: P.C.B. and Components Layout of the Circuit of figure 18 (1:1 scale)<br />

diodes Z1,Z2 and resistors R7,R8 define the minimum<br />

drop across the power MOS transistors of<br />

the <strong>TDA7294</strong>. L1, L2, L3 and the snubbers C9,<br />

R1 and C10, R2 stabilize the loops formed by the<br />

"bootstrap" circuits and the output stage of the<br />

<strong>TDA7294</strong>.<br />

In figures 21,22 the performances of the system<br />

in terms of distortion and output power at various<br />

frequencies (measured on PCB shown in fig. 19)<br />

are displayed.<br />

The output power that the <strong>TDA7294</strong> in highefficiency<br />

application is able to supply at<br />

Vs = +40V/+20V/-20V/-40V; f =1 KHz is:<br />

- Pout = 150 W @ T.H.D.=10 % with Rl= 4 Ohm<br />

- Pout = 120 W @ " = 1 % " " "<br />

- Pout = 100 W @ " =10 % with Rl= 8 Ohm<br />

- Pout = 80 W @ " = 1 % " " "<br />

Results from efficiency measurements (4 and 8<br />

Ohm loads, Vs = ±40V) are shown by figures 23<br />

and 24. We have 3 curves: total power dissipation,<br />

power dissipation of the <strong>TDA7294</strong> and<br />

power dissipation of the darlingtons.<br />

By considering again a maximum average<br />

output power (music signal) of 20W, in case<br />

of the high efficiency application, the thermal<br />

resistance value needed from the heatsink is<br />

2.2 o C/W (Vs =±40 V and Rl= 4 Ohm).<br />

All components (<strong>TDA7294</strong> and power transistors<br />

T1 and T2) can be placed on a 1.5 o C/W heatsink,<br />

with the power darlingtons electrically insulated<br />

from the heatsink.<br />

Since the total power dissipation is less than that<br />

of a usual class AB amplifier, additional cost savings<br />

can be obtained while optimizing the power<br />

supply, even with a high headroom.<br />

11/17


<strong>TDA7294</strong><br />

Figure 20: Power Dissipation vs. Output Power<br />

Figure 21: Distortion vs. Output Power<br />

HIGH-EFFICIENCY<br />

Figure 22: Distortion vs. Output Power<br />

Figure 23: Power Dissipation vs. Output Power<br />

Figure 24: Power Dissipation vs. Output Power<br />

12/17


<strong>TDA7294</strong><br />

BRIDGE APPLICATION<br />

Another application suggestion is the BRIDGE<br />

configuration, where two <strong>TDA7294</strong> are used, as<br />

shown by the schematic diagram of figure 25.<br />

In this application, the value of the load must not<br />

be lower than 8 Ohm for dissipation and current<br />

capability reasons.<br />

A suitable field of application includes HI-FI/TV<br />

subwoofers realizations.<br />

The main advantages offered by this solution are:<br />

- High power performances with limited supply<br />

voltage level.<br />

- Considerably high output power even with high<br />

load values (i.e. 16 Ohm).<br />

The characteristics shown by figures 27 and 28,<br />

measured with loads respectively 8 Ohm and 16<br />

Ohm.<br />

With Rl= 8 Ohm, Vs = ±25V the maximum output<br />

power obtainable is 150 W, while with Rl=16<br />

Ohm, Vs = ±35V the maximum Pout is 170 W.<br />

Figure 25: Bridge Application Circuit<br />

+Vs<br />

Vi<br />

0.22µF<br />

2200µF<br />

3<br />

7<br />

+<br />

13<br />

6<br />

14<br />

22µF<br />

0.56µF<br />

22K<br />

1<br />

-<br />

2<br />

22K<br />

ST-BY/MUTE<br />

4<br />

<strong>TDA7294</strong><br />

15 8<br />

680<br />

20K<br />

10 9<br />

+<br />

22µF<br />

1N4148<br />

22K<br />

-Vs<br />

2200µF 0.22µF<br />

10K<br />

30K<br />

22µF<br />

10 9 15 8<br />

3<br />

<strong>TDA7294</strong><br />

6<br />

14<br />

22µF<br />

0.56µF<br />

22K<br />

1<br />

-<br />

2<br />

22K<br />

4<br />

7<br />

13<br />

680<br />

D93AU015A<br />

13/17


<strong>TDA7294</strong><br />

Figure 26: Frequency Response of the Bridge<br />

Application<br />

Figure 27: Distortion vs. Output Power<br />

Figure 28: Distortion vs. Output Power<br />

14/17


<strong>TDA7294</strong><br />

DIM.<br />

mm<br />

inch<br />

MIN. TYP. MAX. MIN. TYP. MAX.<br />

A 5 0.197<br />

B 2.65 0.104<br />

C 1.6 0.063<br />

D 1 0.039<br />

E 0.49 0.55 0.019 0.022<br />

F 0.66 0.75 0.026 0.030<br />

G 1.02 1.27 1.52 0.040 0.050 0.060<br />

G1 17.53 17.78 18.03 0.690 0.700 0.710<br />

H1 19.6 0.772<br />

H2 20.2 0.795<br />

L 21.9 22.2 22.5 0.862 0.874 0.886<br />

L1 21.7 22.1 22.5 0.854 0.870 0.886<br />

L2 17.65 18.1 0.695 0.713<br />

L3 17.25 17.5 17.75 0.679 0.689 0.699<br />

L4 10.3 10.7 10.9 0.406 0.421 0.429<br />

L7 2.65 2.9 0.104 0.114<br />

M 4.25 4.55 4.85 0.167 0.179 0.191<br />

M1 4.63 5.08 5.53 0.182 0.200 0.218<br />

S 1.9 2.6 0.075 0.102<br />

S1 1.9 2.6 0.075 0.102<br />

Dia1 3.65 3.85 0.144 0.152<br />

OUTLINE AND<br />

MECHANICAL DATA<br />

Multiwatt15 V<br />

15/17


<strong>TDA7294</strong><br />

DIM.<br />

mm<br />

inch<br />

MIN. TYP. MAX. MIN. TYP. MAX.<br />

A 5 0.197<br />

B 2.65 0.104<br />

C 1.6 0.063<br />

E 0.49 0.55 0.019 0.022<br />

F 0.66 0.75 0.026 0.030<br />

G 1.14 1.27 1.4 0.045 0.050 0.055<br />

G1 17.57 17.78 17.91 0.692 0.700 0.705<br />

H1 19.6 0.772<br />

H2 20.2 0.795<br />

L 20.57 0.810<br />

L1 18.03 0.710<br />

L2 2.54 0.100<br />

L3 17.25 17.5 17.75 0.679 0.689 0.699<br />

L4 10.3 10.7 10.9 0.406 0.421 0.429<br />

L5 5.28 0.208<br />

L6 2.38 0.094<br />

L7 2.65 2.9 0.104 0.114<br />

S 1.9 2.6 0.075 0.102<br />

S1 1.9 2.6 0.075 0.102<br />

Dia1 3.65 3.85 0.144 0.152<br />

OUTLINE AND<br />

MECHANICAL DATA<br />

Multiwatt15 H<br />

16/17


<strong>TDA7294</strong><br />

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences<br />

of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is<br />

granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are<br />

subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products<br />

are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.<br />

The ST logo is a registered trademark of STMicroelectronics<br />

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved<br />

STMicroelectronics GROUP OF COMPANIES<br />

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -<br />

Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.<br />

http://www.st.com<br />

17/17


This datasheet has been download from:<br />

www.datasheetcatalog.com<br />

<strong>Datasheet</strong>s for electronics components.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!